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This paper considers the classical problem of diffraction of a plane 

weak shock wave at contours of arbitrary shape. A different approach is 

here offered to the formulation and solution of such problems. The 

essence of the method consists in the fact that the plane unsteady prob- 

lem of diffraction is reduced to an auxiliary three-dimensional steady 

problem, where the third coordinate is proportional to the time. 

In the solution of diffraction problems the space-time system of co- 

ordinates has indeed been applied before. For example, [l] solved in 

this way the problem of diffraction of a weak plane shock wave by thin 

profiles of arbitrary shape, when the front of the incident shock wave 

is propagated along the chord of the profile. But the methods considered 

in the present paper and in [ll are essentially different. 

In the present paper problems of diffraction are solved in a linear 

formulation which, generally speaking, is permissible over only a part 

of the region of diffraction. Khristianovich and his pupils showed in 
121 that when the front of the incident shock wave makes a small angle 

with the normal to the contour, the reflection of the weak shock becomes 

a Mach reflection - not a regular reflection. Accordingly in the 

neighborhood of the Mach reflection the solution of the linear problem 

gives a qualitatively false picture of diffraction. 

In our paper the effect mentioned will also occur at certain points 

of the contour in the first moments of time. But we shall linearise the 

problem in the whole region of the diffraction field for the reason that 

the linearisation of the basic equations of the problem is invalid only 
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in small regions of the diffraction field and for very short durations 

of time. Accordingly, the introduction of nonlinear terms in these small 

regions greatly complicates the a1read.v complicated mathematical foreu- 

lation of the problem, whilst it changes very little the general pattern 

of diffraction for arbitrary durations of time. 

In the first sections the contours are assumed to be rigid. In the 

later Darts the method is extended to deal also rith deformable contours. 

In the Case of a flat plate it is shorn that the problem of diffraction 

can also be solved to the second approximation by the given method. 

1. Formulation of the general problem of diffraction of 
shock waves by nondeformable contours. 1. Suppose that a weak 

steady shock wave impinges on a closed contour C of arbitrary shape in 

the xy-plane (Fig. 1). We shall assume that the flow past the contour C 

by the shock wave is isentropic and irrotational; viscosity and heat 

conduction are neglected. 

For the given assumptions the problem of diffraction of a shock uave 

round a nondeformable contour C reduces to the solution of the wave 

equation for the potential @ 

aw - + ai!, = !!$ ) 
ati 

fzz +, x=f 
9 

y=+ (l-1) 

with the following boundary conditions on C and on the front ABII of the 

reflected shock wave 

am 
-0 zc- on c, @ (z, y, r’) = @,,@, y, r) on ABD 

@ (5, y, T) = a,, (I, y, 7) rben T Q 0 
(1.2) 

Here X, y, T are dimensionless coordinates and time respectively; @ 

is the dimensionless velocity potential; a is the speed of sound; 1 is 

a characteristic length of the problem; n is the 

Y 
exterior normal to the contour; @a is the 

c 

@ 

dimensionless potential of the stream beyond the 

front of the incident shock wave. 

0 
*t 

The couvnencement of diffraction of the shock 

A wave by the contour C is taken as the instant 
when T = 0. For simplicity we shall assume that 

the flow parameters of the gas behind the front 

Fig. 1. 
of the incident shock wave are constant, i.e. 

@)o (r, Y, r) = (AP / pa’) (Y - r) (1.3) 

Here Q is the pressure difference across the front of the incident 

shock wave; p is the gas density. When T > 0 the potential @ will be 
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sought in the form 

It is not diffuclt to see that the perturbation velocity potential 
cp(x, y, T) satisfies the wave equation 

ET!& + E$ = z* (1.5) 

in the region between the reflected shock 
wave A B D and the contour C and the condi- 
tions 

% 
an= 

--c( ay 
O an on c 

Fig. 2. 

Co=0 rhenrf0, cp=o on ABD (1.6) 

2. Let us consider the auxiliary problem of flow of a three-dimen- 
sional steady supersonic stream of ideal gas past a semi-infinite hollow 
cylinder (Fig. 2) with generators parallel to the axis of T, at a small 
angle of attack a. Suppose that the curve, generated by the cross-section 
of the given hollow cylinder by an arbitrary plane T = const, corresponds 
to that part of the contour C, forming part of the boundary of the per- 
turbed region of flow of the incident shock wave past the contour C 
(Fig. 11, or else it corresponds to the whole of the contour C when 

T >vz, where -r2 is the time at which the incident shock wave has com- 
pletely engulfed the contour C. 

The potential q~(x, y, T) for flow past the hollow cylinder satisfies 
the equation 

G-7) 

and the conditions 

acp 8Y _=- 
an 

a a,l on the surface of the cylinder 

cp = 0 when T: = 0, fp=o on the wave surface (l-8) 

In the given auxiliary problem we shall consider only the exterior 
problem, whilst the perturbations from the internal surface will not be 
taken account of, which is permissible by virtue of the linearity of the 
equations (l.?), (1.8). 

Let us compare the system of equations (1.5), (1.6) with the system 
(l.?), (1.8). 
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It is not difficult to see that the equations (1.5) and (1.7) co- 

incide for the value M = 42. ‘Ihe conditions (1.6) and (1.8), except the 

last, coincide when a = aa. 

Let us prove that the condition 9 = 0 at the front of the reflected 

shock wave in (1.6) and 9 = 0 on the wave surface in (1.8) are equivalent. 

For this purpose let us consider the pattern of diffraction in the 

problem (1.5), (1.6) at the instant of time T = TV. When T = T~(T~ < T2) 

the boundary of the perturbed region consists of part of the contour C 

(or the whole of the contour C when T 1 > T2) and the front of the re- 
flected shock wave. In its turn the cross-section of the cylinder by the 

plane T = Tl in the auxiliary problem corresponds to the contour C in 

problem (1.5) to (1.7). But since the wave surface in the auxiliary ex- 

terior problem turns out to be the envelope of the characteristic cones 

arising from the points of the leading edge of the hollow cylinder with 

a semi-angle of n/4, then it is not difficult to see that the section 

curve of the given wave surface by the plane T = TV also correspond:, to 

the curve forming the front of the reflected shock wave in problem 11.5)) 

(1.6). Consequently, the last of the conditions in (1.6) and (1.8), re- 

spectively, al so coincide. 

Accordingly the system (1.5), (1.6) completely coincides with the 

system (1.7), (1.8) and the solution of the auxiliary problem for a = a0 

and M = 42 will give the solution of the problem of diffraction of a 

weak shock wave by the contour C. Let us consider particular cases, when 

the contour C is completely defined. 

2. Diffraction of a shock wave by a circle. Let us pass from reCtangU- 

lar coordinates x, y to polar coordinates r, 8, in which the system (1.5)) 

(1.6) takes the form 

av -=- 
dr 

hsin 0 when r I 

qJ =7 @ when T - 0 

q~ = 0 at the front of the reflected Fig. 3. 

shock wave (4.3) 

By virtue of Section 1, the given problem is equivalent to the ex- 

terior problem of flow past a truncated semi-infinite hollow circular 

cylinder (Fig. 3) by a three-dimensional steady supersonic stream of 
ideal gas with M = 4 2 at a small angle of attack a0 = Ap/pa’. 
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For the solution of the system (2.1) to (2.3), describing also the 

solution of the auxiliary problem, let us use Volterra’s method [31. 

Then when T > 0 the solution of the auxiliary problem reduces to de- 

termination of the potential ~(1, 8, r) on the surface of the appropriate 

cylinder r = 1, satisfying the following Integral equation of Volterra’s 

type II: 

(2.4) 

Here Volterra’s function is given by 

V = In 
(to - r) _t v (TO - r)2 - (r. - r)2 - 4ror siu*[ (Or Q/Z] 

1/tr~--r)~+4r~rsinz((O~-O~] 

The region of integration 1 is the part of the surface of the cylinder 

(Fig. 3) cut off by the cone of influence from the point (r. = 1, O,,,?,,). 

By virtue of the equivalence of the problems the potential q(l, 8. T) 

on the contour C (Fig. 1) for any value of T will also satisfy the inte- 

gral equation (2.4). 

Equation (2.3) can always be solved, e.g. numerically. For large T 

we can construct the asymptotic solution of the problem (2.1) to (2.3). 

By the same token, for large T the radius r of the nave surface (Pig. 

3) depends weakly on 8 and then the function ~(2, y, T) can be sought 

in the form 

q (r, y, r) = - ~0 sine f (r, 7) (2.5) 

Let us substitute (2.5) in (2.1) to (2.3) and to the new system so 

obtained let us apply Laplace’s transformation. Then we have 

where Kl(9) is the Bessel function of imaginary argument; M is the con- 

tour in the plane of 9. along which the integration proceeds in the 

application of the inverse Laplace transformation. Determining 9( r ,8,T) 

from equations (2.4) or (2.5) for large T we can find, for example, the 

pressure distribution p along C for any value of T 

“3 
P(f,O,r)=po-~pn- ( ’ Or ,~=1 

For large values of T we have [41 

(2.7) 
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From the form of the solution (2.6) and 
Fig. 4. (2.8) it follows that the reflected wave be- 

haves as an outgoing wave, as indeed it must 
from physical considerations. 

3. The case when tbe contour C is a thin profile. We shall assume 
that a thin profile C moves (Fig. 4) with a certain velocity 1! at zero 
angle of attack along the x-axis and that the shock wave travels at a 
certain angle y to the x-axis. 

Moreover. we shall solve the weakly nonlinear problem, i.e. we shall 
take account also of terms of the second order of smallness in the equa- 
tion for the perturbation velocity potential (p(x, y, 7). and the inter- 
action of the shock wave with perturbations arising from the moving Pro- 

file will be ignored. 

Assuming that the motion of 
rotational and isentropic (k is 
problem to determination of the 
satisfying the equation 

he shock wave past the profile C is ir- 
the adiabatic index), we reduce the 
perturbation velocity potential q(x,y,T) 

with accuracy up to terms of the third order of smallness with respect 

to (P(xI YI T) and the conditions 

(3.2) 

‘p = 0 when t = 6, cp=o 
at the front of the 
reflected wave 

(3.3) 

(acp / ~v)U_+-o = (89 / &++a when u <a (3.4) 

In this condition of Zhukovskii on the trailing edge and the vortex 
sheet, y = f(x) is the equation of the profile C. Let us set (P(x, y, T) = 

‘p1(X# Y8 T) + +J(x, y, 7) f . . .; then cp, and ‘pz satisfy the equations 
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and the conditions 

outside the reflected shock wave 

Following the method of Section 1, it can be shown that the plane 
problem of flow of a weak shock wave Past a moving thin profile is eqUi- 
valent to the problem of flow of a steady supersonic three-dimensional 
stream of ideal gas with M = 42 past a corresponding thin wing at a 
small angle of attack a0 cos y in two cases. 

1) Flow past a moving flat plate 

f @I = 0, 2kr=k--1, A&=$#0 (r-is 8n arbitrary angle) 

2) Flow past a fixed thin profile of a shock wave from exactly below 

i’ (4 # 0, Mo = 0, 2kt=k--l, r=O 
(ht--is the adiabatic index in the auxiliary problem) 

The solution of the linear problem for a flat plate with M, > 1 was 
given by Golubinskii 121. 

Let us derive the solution of the problem of flow of 8 weak shock 
wave with y = 0 past a flat plate moving with MO > 1 up to the second 
approximation, assuming that cpl(x, y, ~1 is known [51. 

Since the given problem is equivalent to the flow of a three-diaen- 
sional steady supersonic stream with M =\J 2 past the appropriate air- 
foil (in the form of a semi-infinite flat plate) (Fig. 5). then we shall 
solve the appropriate auxiliary problem. The 
equations of the side edges of the airfoil 

fY (Fig. 5) have the form 

z = Mar (AC), x=1+lV,~(BD) 

The whole surface of the plate can 
vided into three regions, as shown in 
The function ‘p*(x, y, T) will be determined Fig. 5. 

in each of the given regions. Then to the 
conditions (3.7). (3.8) we have to add the condition of continuity of 

potential on transition through the surface Z. On one part of the sur- 
face Z (let us denote it by II) the solution in the region (2) will be 
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joined to the solution in region (f). whilst on the other, 1,. it is 

joined to the solution in region (3). The line dividing the surfaces 

11 and I2 will correspond to the line of zero potential, since it is a 

generator in fact for the whole wave surface of the flat plate, for 

which the potential is taken as equal to zero. 

Let us denote the solutions in the regions (f) and (3) by q2, and 9g3 

respectively. It is easy to see that the solutions in the regions (1) 

and (3) correspond to the solutions of flow past a flat plate without 

sweep and with sweep, respectively, and then q2 l and 9g3 have the form 

T?~(z, y, T) = a0 [r - (2Zo -:- 1) y] - 30~ (kit -1- y) (3.11) 

For solution of equation (3.6) in the region (2) with the boundary 

conditions (3.7). (3.8) and the condition of continuity of potential at 

the surface 1 we apply the modified method of Volterra. Then for ~gg(x, 

y, f) we obtain 

f3921 
- V aN dz + 

) 

VF (E, rl, 5) dE;dqd: (3~13) 

Here Q is the volume bounded by the plane y = 0, the surface of the 

cone of influence at the point (x, 0, T) and the part of the surface 1 

cut off by the given cone of influence; F(T, x, y) is the right-hand 

side of equation (3.6); N is the conormal to the surface 1; Volterra’s 

function has the form 

Since the surface 1 is characteristic, the conormal N lies on the 

surface 1 and a/aN = a/&, where s = 4 (x2 + y’)/T. Consequently on 1 it 

is sufficient to know the potentials q21 and ~~3 whilst their derivatives 

with respect to the conormal N are easily determined. 

Knowing the potential Q* = 921 + ~~~ + qz3 we can find the distribu- 

tion of pressure p on the surface of the plate according to the formula 

I’ == po - pus (““‘+?!$) 
at (3.13) 
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The dividing line of the surfaces 11 

termined from the two equations (3.12). 

.Vote. It was demonstrated above that 
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and I2 (Fig. 5) is easily de- 

(3.13), if we set p21 = 923 = 0. 

the problem of diffraction of a 

shock wave by a contour of arbitrary shape is equivalent to the exterior 

problem of flow past a corresponding cylinder by a supersonic (M = 4 2) 

steady stream of ideal gas. 

It can be shown also that the internal problem of flow past the 

cylinder corresponds to the problem of propagation of a disturbance 

(Fig. 1) inside a contour C, for which at large values of T we can con- 

struct an asymptotic solution. For ~(7, 8. T) it is not difficult to 

obtain [61 for large values of T 

For the pressure p at large values of -r we have on the contour 

(X15) 

where ak are the positive zeros of the function Ii (q). 

The diffraction of weak shock waves by a cascade of profiles also can 

be studied by the method described above. 

4. Formulation of the general problem of diffraction in 

the case of a deformable contour. We shall assume that the rela- 

tion between the pressure p on the contour C and the dimensionless de- 

formation s(s, 1) of the contour is given 

P (ST, r) :- y [e (s, r)l (4.1) 

llere T is the dimensionless time, s is arc length along the contour 

c. 

First of all let us consider the case of the following relation (k 

is a coefficient of proportionality) 

p (S, T) = k-l& (S, z) (4.2) 

l3y virtue of the fact that p(s, 7) %a@~ (where 0 is the perturba- 

tion velocity potential) we have 

& (S, T) -_ h i; (k - - pa%) (4.3) 

Moreover, we shall assume that the displacement E and its derivative 
with respect to T are small. Then it can be shown, just as in the case 

of a nondeformable contour (Section 11, that the problem of diffraction 
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of a weak shock wave (Fig. 1) round an arbitrary deformable contour C 
reduces to the determination of the perturbation velocity potential 
o(r, y, T), satisfying the wave equation (1.5) with the boundary and 
initial conditions 

cp=fl at the front of the reflected wave (4.5) 

cp=O when T<O (4.6) 

and that the given problem, described by the system f 1.51, (4.4) to 
(4.6), is equivalent to the problem of external flow past a correspond- 
ing semi-infinite hollow cylinder (Fig. 2) of a steady three-dimensional 
supersonic (M = 4 2) stream of ideal gas at a small angle of attack aO. 
Consequently, we shall solve the given auxiliary problem of flow past a 
hollow cylinder. Just as in Section 1, we apply Volterra’s method [31 
to the system (1.5), (4.4) to (4.6). ‘lh en when T > 0 the solution of the 
problem reduces to determination of the potential ~(s, T) at the surface 
of the corresponding cylinder, satisfying the integro-differential equa- 
tion 

Here Z is the part of the surface of the cylinder cut off by the cone of 
influence from the point (so, -rO). Moreover, the surface of the cylinder 
is taken to correspond to the undeformed contour C by virtue of the 
smallness of a. V is Volterra’s function and has the form (3.15). Having 
determined the potential 9, we can calculate the remaining parameters of 
the flow. For example, the pressure p on the contour C is given by 

P = Pa - pns (&p / dr)C (4.8) 

Hence, substituting (4.8) in (4.2), we find that 

& (s, z) = - h ($9 ,’ dr)C (4.9) 

5. Diffraction of a shock wave in the case of a deformable 
circle. 1. In polar coordinates r, 0 the system (1.4) to (1.6) takes 
the form 

acr CY’P 
sr = - r,sinB+ hS when r=l 

(5.1) 

(5.2) 

cp = 0 on ..lBD, Cp==o when t<O (5.3) 
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By virtue of Section 1 the given problem is also equivalent to the 

problem of flow past a corresponding truncated semi-infinite hollow 

cylinder F = 1 + ~(0, T) (Fig. 3) of a steady three-dimensional super- 

sonic (M = 42) stream of ideal gas at a small angle a,, = &plpa2. 

As in the case of arbitrary contour C the solution of the given prob- 

lem can be reduced by Volterra's method to the solution of an integro- 

differential equation of type (4.7), where 1 is the part of the surface 

of the corresponding cylinder r = 1, cut off by the cone of influence 

from the point (rO = 1, 0,, -rO). 

An approximate expression for ~(8, T) is given in [?I. 

For large values of T we can construct an asymptotic solution of the 

problem (5.1) to (5.3). In fact, for large values of T the radius of the 

whole wave surface of the flow past the cylinder depends weakly upon the 

angle 0 and for large T we can assume that 

cp(r,O,T) = - rosinOf (r,T) (5.4) 

Let us apply the Laplace transformation to the system (5.1) to (5.3) 

with conditions (5.4). Then the problem reduces to solution of Bessel's 

equation for the transformed function Fl(r, a) 

0 

where q is the variable of the Laplace transformation, 

tions that 

dF 1 
-= - - hq?F 
dr Q 

and that its derivatives with respect 

difficult to see that the solution of 

form 

when r = 1 (5.6) 

to T vanish when 7 < 0. It is not 

the system (5.5) to (5.6) has the 

Consequently 

and for large -r the potential T(F, 8, T) is determined by formula (5 4). 

under the condi- 

(5.7) 

(5.8) 

Setting in (5.7) A = 0, we obtain the solution at large T for the 

rigid contour, constructed in Section 1. From (5.4) at large T the 

pressure is given by 
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&Pa’ 
sin 8 P=Po-- I \ 

qF (l,q) eq’dq when I’. I 

iM 

(5.9) 

01 

p = p. - gopa sin 8 e--Q1(A)r [A (h) cos {qz (hj z} + 
i 

-k B (A) sin {q? (h) t}] - \ qF (1, q) eqTdq] 
L. 

(5.lO) 

Here - q1 + iq2 is the root of the function F’(1, q), A(A) and B(A) 
are certain completely determined functions of A and when h = 0 

q1 = 0.6435, q2 = 0.5012, A = 1.2120, B = 0.1898. 

In (5.10) the contour of integration L consists of the upper and 
lower sides of the cut along the negative axis in the q-plane, including 
a small circle round the point q = 0. I3reaking the contour L into the 
three parts mentioned, integrating the second term in (5.10) along these 
paths and reckoning that 

K, (qe”“) = -Ii, (q) T inl, (q), Ii0 (qeki”) = + K, (q) _t inlo (q) 

h’,’ ((I) -= - h’, (q) - h’, (qj !q, Kil (Q) II (q) + K1 (4) /Cl (cl) zz 1 / 4 

we obtain 

-QTdq 

-T-m(q) i hqK1 ($+na [II’(q)+hqf, (‘/)I’) q2 
\ qF (1, q) e’l’dq = \ 
I, 0 

Substituting (5.10) in (4.1), we find that 

E (0, T) r & sin0 \ qF (1, q) eq’dq 
Ii1 

(5.11) 

or 

E (0, T) = h sin 0 ‘C-C~l()+ [A (A) Los {qz (h) 7) + 
i 

+ B(k) sin {q? \ /A) ~11 -- \ qF (1, q) eqrdq} 
i 

2. Let us generalise the foregoing results to the case when 

AP =-- ApoQ CEJ (5.12) 

i.e. when the pressure difference Ap behind the front of the shock wave 
is a given function of the dimensionless distance c. 
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Taking advantage of the linearity of the problem, let us apply the 
principle of superposition, constructing a solution for Q(t) = 6(e), 
where S(E) is the Dirac function, i.e. in the case of an extremely short 
incident wave. 

The solution, considered in sub-section 1, was constructed for the 
step function Q(c). But since p, and consequently E also, undergo dis- 
continuities at T = 0, it is easily seen that when Q(t) = 6(t) 

Es (e, T) = E (0, T) 6 (T) + aqy 
+-4 

where ~(8, T) is the solution for the step function Q(t). Hence it 
follows that in the case of an arbitrary function Q(E) 

&Q co, z) = Q (0) E (0, T) + “\ &’ (Z - E) E (8, E) dg (5.13) 
._ 
n 

For example, when Q( {) = 1 - PC 

(5.14) 

where ~(0, T) is determined from equations (4.7) to (4.9) or for large 
T from equation (5.11). 

6. Solution of the problem for a circle, when the depend- 

ence of the displacement of the contour upon the pressure 
on the contour is nonlinear. Let us give a generalisation of the 
results of Section 4 to the case when 

P @,T) = Y [E (e, t)] (6.1) 

Let us consider two auxiliary problems. 

1. Let the pressure at the front of the shock wave depend linearly 
upon the time, i.e. 

Ap, = l--r (6.2) 

Then, using Duhamel’ s integral or formula (5.14)) we obtain 

Ep (0, r) = E (0, z) - p [ & (0, 7) dz (6.3) L 

with condition (6.2), where ~(8; -r) is determined from equations (4.7), 
(4.9) or from (5.11). 
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2. Let the pressure p = U(r) be applied suddenly to the contour C. 
Then the radially-symmetric displacement ~~(7) is obtained from the 
solution of the corresponding problem concerning flow past a hollow semi- 
infinite cylinder, the section of which is normal to the axis of T. It 
is not difficult to see that 

Let us pass to the case (6.11, reckoning that (d Y’/~E),,, = k-‘, and 

let us set 

Y,(e) = Y (8) - li-1s (6.5f 

Then, following Baron f?] , we obtain 

(6.6) 

Equation (6.6) is a nonlinear integral equation with respect to 
+0, T) and can be solved numerically for known values of Ed and e1 
and a given form of the function Y)(e). 

The solution found for Ed from (6.6) can be generalised to the case 
(5.12). Just as in sub-section 2 of Section 2, we obtain 

Accordingly, the problem can be solved in general form for (6.1), 
(5.12). 

Note. From the solution (5.8) for large f it can be shown that the 
deformability of the contour can qualitatively change the Pattern of the 
diffraction of weak shock waves round these contours. 
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